Runoff Reduction Recommendations for the Town of Coventry - Fall 2021

University of Connecticut Stormwater Corps <u>https://ecorps.initiative.uconn.edu</u>

Benjamin Gardiner *Environmental Science 2022*

Emma Morgan Environmental Science 2022

Lake Wangumbaug - Coventry Lake

SUMMARY

During the fall of 2021, a team of UConn students and Extension faculty performed an evaluation of potential stormwater enhancement opportunities in the town of Coventry, CT. The process involved a desktop analysis and field visits to determine where potential green stormwater infrastructure installation opportunities existed on publicly owned land parcels. Calculations were performed to determine the potential stormwater and pollution reduction benefits from each of the proposed installations. **6 locations** were determined with **10 separate disconnections**.

If all projects identified in the report are implemented, over **110,200** sq ft of impervious cover will be disconnected from the stormwater drainage system. This means that over **2,902,100** gallons of untreated stormwater, about **30.2** pounds of nitrogen, and **4** pounds of phosphorus will be prevented from entering local water bodies annually.

IMPERVIOUS SURFACES & RUNOFF

Impervious surfaces, including roads, rooftops, parking lots, and other developments do not allow water to penetrate through them. Natural surfaces, such as grass, leaf litter, vegetated areas, or dirt areas absorb a significant portion of water from precipitation and runoff. Once water penetrates the ground, it then flows into surface water bodies or is recharged into groundwater aquifers. When natural surfaces are replaced with impervious surfaces, the water cycle is disrupted. As a result, soil infiltration decreases, while surface runoff increases substantially, and is often diverted into stormwater management systems and discharged directly into the local water bodies.

Runoff over impervious surfaces collects pollutants, and causes flooding and erosion that negatively affect the water quality of local water bodies. To prevent a decrease in water quality, runoff can be disconnected from the stormwater management system by implementing green infrastructure practices that reduce or convert impervious practices. For instance, downspouts on buildings and large areas of impervious surface can be designed to direct runoff into rain gardens and bioretention areas, box planters, tree box filters, or rain barrels. Previously impervious surfaces (roads, parking lots, pathways) can be converted into pervious surfaces using pervious alternatives to traditional materials.

COMMON GREEN INFRASTRUCTURE PRACTICES

Rain Gardens and Bioretention

Tree Box Filters

Pervious Pavement

Rainwater Harvesting

Planters

Green Infrastructure Practices -Rain Garden / Bioretention

A rain garden is a green infrastructure practice designed to capture precipitation runoff from an impervious surface. By doing so, water is allowed to percolate into the ground rather than directly entering stormwater management systems. They are usually built adjacent to the impervious area in question and are depressed approximately around 6 inches, depending on how much area is available. Rain gardens not only help to reduce pollution of local waters, but also add to the aesthetic appeal and biodiversity of urban areas.

When built next to a parking lot, one or more sections of curb is cut and water is directed through a path composed of cobble or gravel to minimize erosion. If implemented next to a building, gutters can direct water into the garden. From here, the water is either taken up by plants or enters the soil, and eventually, the water table via percolation. Appropriate plants for a rain garden tend to be shrubs or grasses that are tolerant to drought, flooding, and exposure to high salt concentrations. Ideally, these gardens are planted with hardy native perennials to minimize the need for maintenance. A *bioretention* is an enlarged rain garden specifically engineered to handle larger quantities of water.

Green Infrastructure Practices -Permeable Pavement

Permeable Pavement is a green infrastructure practice designed to capture precipitation runoff from an impervious surface. By doing so, water is allowed to percolate into the ground through the pavement rather than directly entering stormwater management systems. Pervious Pavements can include Permeable interlocking concrete pavers (PICPS), asphalt, or concrete.

The most important aspect of a permeable concrete is the base. Proper infiltration requires that the base is NOT compacted. The base includes multiple layers of open grated sub layers at different sizes to evenly distribute water throughout the area. Some permeable paver locations also include a sub layer drainage pipe under a geotextile for overflow. This is not required.

Site Location Map

- 1. Town Hall
- 2. Administration
- 3. Police Station
- 4. Booth and Dimock Memorial Library
- 5. Coventry High School
- 6. Patriots Park/Senior Center

Selection Criteria

- Municipally-controlled sites
- Education potential
- Impervious surface disconnection
- Water quality & quantity impacts
- Cost effectiveness
- Maintenance concerns
- Taking advantage of current redevelopment, repaving, and removal projects

Coventry Village

Pros:

- located next to entrance, very visible along road
- can disconnect large area of parking lot

Cons:

- will require rock channel to navigate around existing tree
- will require berm to facilitate drainage
- maintenance will need to be modified

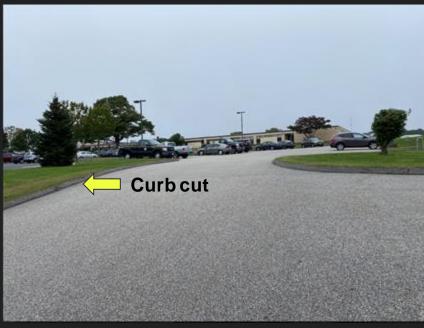
Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
21,780	Rain garden	573,479	5.97	0.76	6 inch depth: 3,616

Impervious_2012_StatePlane
Impervious
Not Impervious
Buildings
Roads
Other Impervious

Pros:

- prime location in front of building by entrance
- very visible along the road

Cons:


- will require berm to prevent runoff into road
- will need curb cut

Existing storm drain Drainage Area: GSI practice area: Flow direction:

Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
23,609	Rain garden	621, 629	6.47	0.82	6 inch depth: 3,919

Administration

Pros:

- excellent location at entrance of administration
- easy installation- extension of existing garden

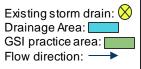
Cons:

- need to disconnect downspout on corner of building
- modify maintenance

Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
1045	Rain garden	27,526	0.29	0.036	6 inch depth: 174

Administration

Police Station


Pros

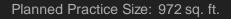
- Easy installation, already constructing parking lot extension
- Good location, near entrance of police station, visitor lot.

Cons

• Wetland upland review area

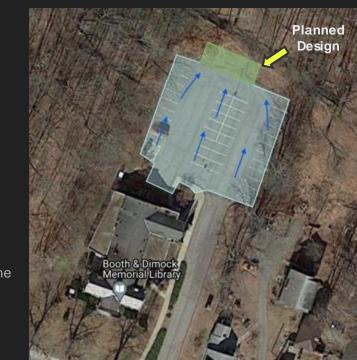
Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
7,840	Rain garden	206,445	2.15	0.29	1,301 (6 inch depth)

Police Station



Impervious

Booth and Dimock Memorial Library



Pros

- Great educational opportunities
- Already planned in construction

Cons

- The recommend ratio (impervious:pervious) for pavements is 4:1, currently the design is around a 15:1.
- Some of the runoff will not be collected, will overflow into the wetland.
- Possibility for clogging, must be kept up accordingly
- Consider converting more existing stalls to permeable pavement to expand capacity

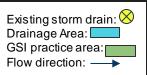
Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
15,394	Permeable Pavement	405,320	4.22	0.58	3,849 (1:4 ratio)

Existing storm drain.

Flow direction:

Drainage Area: GSI practice area:

Booth and Dimock Memorial Library


Impervious

Roads

Parking Addition

Coventry High School Main Entrance #1

Southern half of the front parking lot

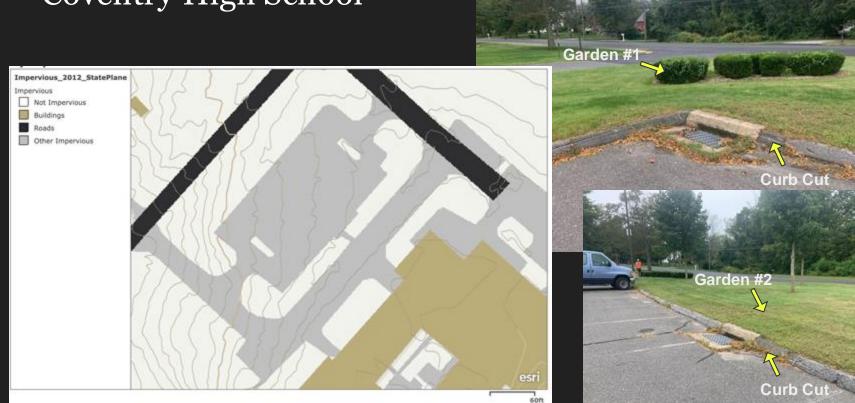
Pros

- Easy curb cut before the storm drain
- at the front of the building for easy viewing and educational opportunities
- Can be added to the current shrubbery

Drainage	Suggeste	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	d Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
15,638	Rain Garden	314,244	3.27	0.45	991 (12 inch depth)

Coventry High School Main Entrance #2

Northern half of the front parking lot


Pros

- Easy curb cut before the storm drain
- at the front of the building for easy viewing and educational opportunities

Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
11935	Rain Garden	411,743	4.28	0.58	1,298 (12 inch depth)

Coventry High School

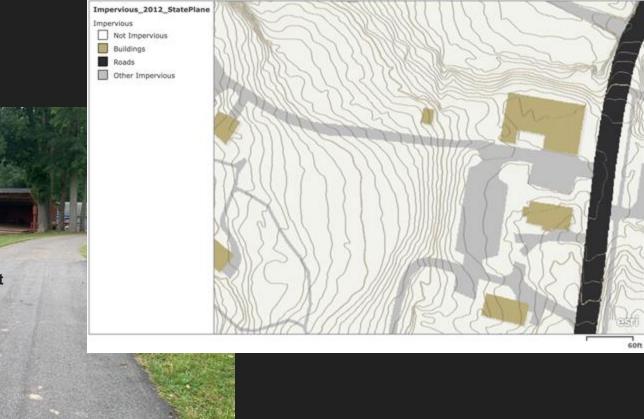
Patriots Park


Rain Garden off of the long driveway

Pros

- Directly connected to lake
- Educational opportunities (park)

Cons


- Needs to be short shrubbery, to not obstruct the bandshell
- Takes away from bandshell seating area

Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
11,064	Rain garden	291,317	3.03	0.41	1,837 (6 inch depth)

Patriots Park

Pros:

- easy disconnect: downspouts on front of building
- modify existing garden at entrance
- very visible at entrance

Cons:

• will require additional landscaping

Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
1220	Rain garden	32,114	0.33	0.042	6in depth: 203

Pros:

- right next to picnic area
- preventing excess runoff into lake

Cons:

- challenging to disconnect entire roof because there are electrical units on either side of downspout in middle of roof
- need to pipe water under sidewalk to rain garden along stone wall

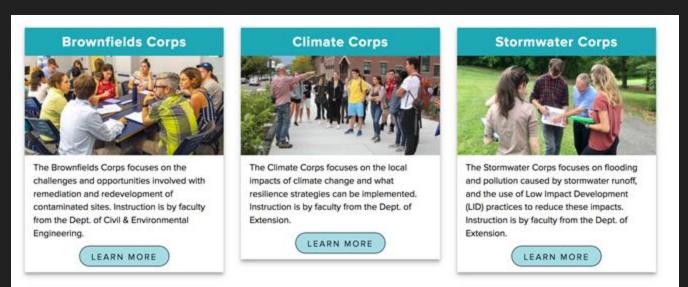
Drainage	Suggested	Annual Gallons	Annual Nitrogen	Annual Phosphorus	Suggested practice size (sq. ft)
Area (sq. ft)	Practice	treated	Reduction (lb N/yr)	Reduction (lb N/yr)	
697	Rain garden	18,351	0.19	0.03	6 in depth: 116

Estimated Cost Per Site

Site	Practice	Low Price Range	High Price Range	Drainage Area (sq. ft.)
Town Hall: Option #1	Rain Garden	\$7,230	\$25,300	21,780
Town Hall: Option #2	Rain Garden	\$7,840	\$27,430	23,609
Administration	Rain Garden	\$700	\$1,220	1,045
Senior Center: Option #1	Rain Garden	\$810	\$3,230	1,220
Senior Center: Option #2	Rain Garden	\$462	\$1,851	697
Patriots Park	Rain Garden	\$3,673	\$14,693	11,064
Police Station	Rain Garden	\$2,603	\$10,412	7,840
Booth and Dimock Memorial Library	Permeable Pavement	\$3,402 (Asphalt)	\$7,776 (Asphalt)	15,394
High School Main Entrance #1	Rain Garden	\$3,962	\$15,849	15,638
High School Main Entrance #2	Rain Garden	\$5,191	\$20,767	11,935
TOTAL Note: Pricing based off of	f 6in deep rain gardens, e	\$35.873 cept High School #1 and :	\$128,528	110,200

CONTACT & PARTNERS

This project was completed by students enrolled in the <u>Stormwater Corps</u> course at the University of Connecticut as part of the University's <u>E-Corps</u> <u>Program</u>, funded by the National Science Foundation. For more information, visit the websites and contacts below.


Stormwater Corps Contacts:

https://nemo.uconn.edu Mike Dietz, UConn CLEAR, <u>michael.dietz@uconn.edu</u>, 860-486-2436 Dave Dickson, UConn CLEAR, <u>david.dickson@uconn.edu</u>, 860-345-5228

UConn Environment Corps

From our classrooms to your community

<u>E-Corps Contacts</u>: <u>https://ecorps.initiative.uconn.edu</u> Chet Arnold, UConn CLEAR, chester.arnold@uconn.edu

