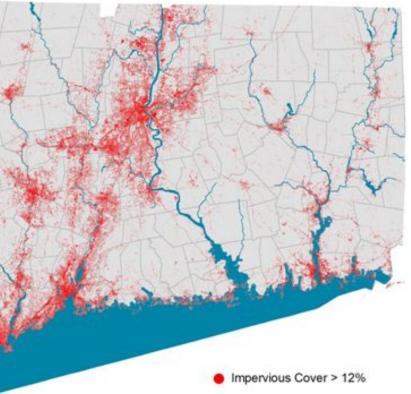

Center for Land Use Education & Research

Stormwater Runoff Reduction Plan - Clinton, CT

Created by: Ben Zaccara, Fiona Casey, and Rachael Ruggiero - UConn Undergraduate Students Mike Deitz, David Dickson, Chet Arnold and Josh Snarski - UConn Center for Land Use Education & Research

Table of Contents

Impervious Surfaces & Runoff	3
MS4 Requirements	4
Common Infrastructure Practices (Rain Gardens, Pervious Pavement, Tree Box Filters, Green Roofs, Rainwater Harvesting)	5-9
Explanation of Calculations	10
Cost Sheet	11
Site Selection & Approach	12
Sites Map	13
Site 1: Parks & Rec	14-18
Site 2: Clinton Town Hall	19-20
Site 3: Clinton Town Marina	21-23
Site 4: Lewin G. Joel School	24-28
Site 5: Henry Carter Hull Library	29-30
Site Recommendation Figures	31
Sites Not Chosen for Stormwater Retrofits	32
Contact & Partners	33


Impervious Surfaces & Runoff

Increase in urban development leads to increase in *impervious cover*

- *Impervious cover-* any surface which prevents the natural infiltration of stormwater into soil
 - *Ecological impact-* Runoff collects pollutants as it flows across impervious cover where it gains volume and velocity leading to erosion, sedimentation, and increased flooding.
 - Increased runoff enters city sewer systems where it is discharged into water bodies having adverse ecological consequences

• *Green Stormwater Infrastructure (GSI)* disconnects stormwater runoff from city sewer systems allowing for infiltration into the ground

MS4 Requirements- Municipal Separate Storm Sewer Systems Permitting Program

- 2004- DEEP recognizes need for regulation of stormwater runoff
 - *Nonpoint Source Pollution*: stormwater runs across impervious surfaces, collecting pollutants as it flows Ο into storm drains.
 - Permitting program encourages use of *Low Impact Development* practices to mitigate pollution in Ο waterways. These practices are designed to maintain or recreate pre-development hydrology, with an emphasis on treatment of stormwater onsite.

- 2016- DEEP issues additional MS4 requirements
 - As part of the development of stormwater management plans, along with subsequent monitoring and Ο reporting, municipalities are required to *disconnect 2% of directly connected impervious cover*.
 - **Directly connected impervious cover** is any impervious surface which conducts stormwater into the city Ο sewer system, and which eventually flows into lakes, streams, and the ocean.

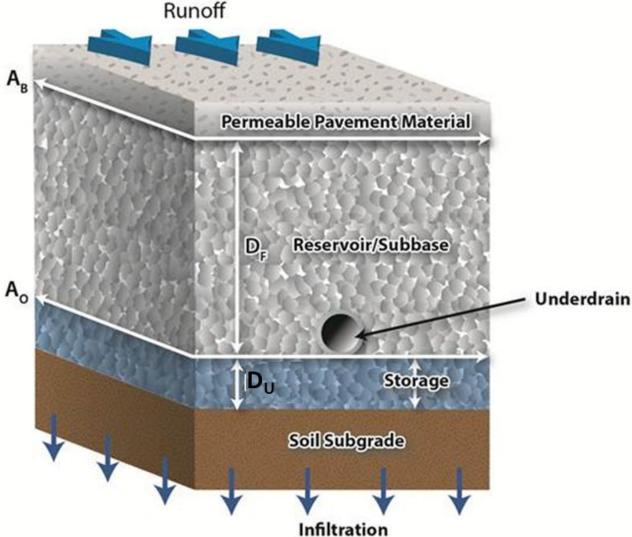
Mulch Layer

Rain Gardens and Bioretention

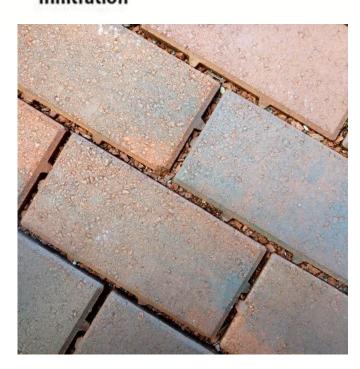
- Shallow depression which collects runoff from impervious cover
- Facilitates infiltration of runoff while filtering out pollutants and recharging groundwater
- Supports wildlife by providing food and shelter

Inlet from Roadway

or Parking Area


(Grass, Vegetated, or Stone-Lined Swale)

Pervious Paving


- Allows for runoff to infiltrate into soil by passing directly through pavement surface
- Can be used to treat additional runoff from nearby impervious cover
- Can be implemented in a variety of light traffic areas
- Many cost effective options exist to suit site-specific needs

Gravel Grid Pavement

Permeable Interlocking **Concrete Pavers**

Tree Box Filters

- Consist of a precast/cast in place concrete box filled with soil and filtration media
- Commonly used along sidewalks and roadways
- Runoff is contained within soil and consumed by tree, with overflow exiting the system via underdrain



Green Roofs

- Consist of a layered system with plant material and filtration media separated from the existing roof by a layer of waterproofing and root repellent
- Extensive-Intensive: varied degrees of complexity; from simple, inaccessible systems with low plant diversity, to accessible, highly diverse designs
- Feasibility dependent upon structural integrity of building

Rainwater Harvesting

- Runoff from rooftop conducted through downspouts to collection units, commonly rain barrels and cisterns
- Used for watering gardens, livestock, fire safety, domestic use, and long term storage
- Amount of runoff disconnected depends on use and use frequency

Explanation of Calculations

Drainage Area-

The potential watershed area for each potential retrofit was estimated using geospatial measurement Ο tools in Google Maps and confirmed during site visits

Practice Sizing-

- Sized for 1" rainfall event (around 90% of storms in CT) Ο
 - Runoff volume based on watershed surface area, with dimensions of practice sized to accommodate total runoff volume

Nutrient Reductions-

- Determined using estimated drainage area and nutrient export coefficients developed by Dr. Charles Ο Fink
 - Point source pollution not factored into calculations

Gallons Treated-

• Volume of stormwater treated determined by factoring CT's 4 ft. annual rainfall into the drainage area for each potential retrofit

Cost-

- Price range for GSI practices are estimated using industry literature, government websites/reports and Ο installation manuals
 - Prices may vary as examples used are only of similar retrofits. Prices were not determined by consulting contractors

Green Stormwater Infrastructure (GSI) Practice Unit Pricing Table

			Price Range						
-	Practice	Unit	Low		High		Notes		
	Rain Garden	SF	\$	4.00	\$	16.00	Price varies with underdrain and vegetation	Hou	
	Bioretention	SF	\$	5.00	\$	30.00	Price greatly varies with structures, underdrains, bank stabilization and depth	Brer	
	Vegetated Swale	LF	\$	4.50	\$	20.00	Not Included: Structures, bank stabilization clearing/grubbing, curbs, underdrain		
	Extensive Green Roof	SF	\$	7.00	\$	36.00	Not Included: Irrigation system, structural improvements, > 6" medium depth	PDEI Man	
	Gravel Grid	SF	\$	1.50	\$	5.75	Includes the cost of installation		
	Porous Asphalt	SF	\$	3.50	\$	8.00	Not included: Underdrain, >12" aggregate depth	LID	
	Porous Concrete	SF	\$	5.00	\$	13.50	Not included: Underdrain, >12" aggregate depth	LID	
	Permeable Pavers	SF	\$	8.00	\$	17.00	Not included: Underdrain, >12" aggregate depth	LID	
	Tree Box Filter	EA	\$	7,000.00	\$	18,000.00	Unit sizes and treatment volumes vary	PVP	
8	Rain Barrel/Cistern	EA	\$	1,500.00	\$	2,500.00	Not included: Cost of installation	Nati	

These unit prices have been gathered from published literature, government websites/reports, and installation manuals. Unit prices have not been normalized to current market values. The cost ranges were selected to best represent recommendation typically made by the University of Connecticut Stormwater Corps course and are for informational purposes only. Prepared by Joshua Snarski, University of Connecticut, Department of Natural Resources and the Environment, 2021.

References

udeshel, 2011

ennan, 2011; MassDEP, 2018

EP, 2006

EP, 2006; Peck and Kuhn, 2001; inso, 2021, LID Center, 2005

Center Website, 2007

Center, 2005

Center, 2005

Center, 2005

PC, 2015; MassDEP, 2018

tional Tank Outlet, 2021

Site Selection & Approach

Preliminary Analysis-

- Web-based search to identify potential GSI project locations to conduct site visits Ο
 - Research using town databases: identifying property ownership, prominent locations, and potential educational and community outreach opportunities
 - Geospatial analysis using aerial imagery from ArcGIS, Google Maps

On Location-

- Site specific recommendations selected based on suitability for GSI practices Ο
 - Identify location of existing storm drains or downspouts and their proximity to potential GSI practice area
 - Assess slope of surrounding land, determine drainage areas for storm drains and direction of runoff flow
 - Locate above and below ground obstructions
 - Determine best locations for visibility of practice, educational value, and potential community involvement

Clinton Parks & Rec 201 Killingworth Tpke

1-95

Henry Carter Hull Library 10 Killingworth Tpke

Clinton Town Marina 37 Riverside Dr

Stormwater Retrofits **Clinton**, CT

Lewin G. Joel School 137-B Glenwood Rd

Clinton Parks & Rec

201 Killingworth Tpke Clinton, CT

Notes:

-Large area of impervious cover ideal for disconnect

-High profile location with proximity to water body

-Great location for showcase of various GSI practices

-Total Potential Disconnect: 101,887 sq. ft.

Potential disconnect of 10,240 sq. ft. of impervious cover with use of rain garden. High visibility near west parking lot.

Potential disconnect of 9,148 sq. ft. with use of pervious pavement/

> Potential disconnect of

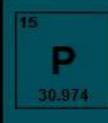
10,541 sq. ft. of impervious cover with the use of tree box filters. Excellent location to create entryway with tree boxes.

an.

Potential disconncect of 101,877 sq. ft. of impervious cover with the use of bioretention basin. Can be implemented with other suggested practices to offset total runoff volume. Basin designed for infiltration with no standing water; constructed wetland designs also possible if desired.

14

ANEL DO

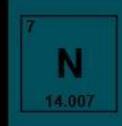

Storm Drain

Drainage Area 101,880 sq. ft.

> Runoff from west half of site conducted through woods to final drain pipe

Suggested Practice **Bioretention** - 3' Depth - 2,830 sq. ft. - \$11,320 - \$45,280

2,682,818 gal. runoff treated per year



Phosphorus Reduction 3.54 lb/year

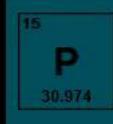
Parks and Rec 201 Killingworth Tpke

Bioretention Opportunity

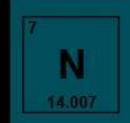
Total drainage area conducted to final drain

Nitrogen Reduction 27.86 lb/year

Drainage Area 9,148 sq. ft.


> Permeable Pavement Opportunity

Storm Drain


- \$8,400 - \$19,200

273,745 gal. runoff treated per year

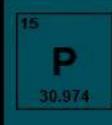
Phosphorus Reduction .32 lb/year

Parks and Rec West Parking Lot

Nitrogen Reduction 2.5 lb/year

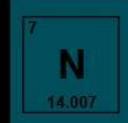
Drainage Area 10,236 sq. ft.

Curb Cut


Rain Garden Opportunity

Storm Drain

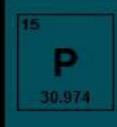
Suggested Practice Rain Garden - 1,280 sq. ft. - 8" Depth


- \$5,120 - \$20,480

269,546 gal. runoff treated per year

Phosphorus Reduction .36 lb/year

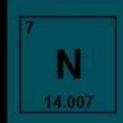
Parks and Rec West Parking Lot


Nitrogen Reduction 2.80 lb/year

Drainage Area 10,541 sq. ft.

Suggested Practice Tree Box Filters - 2 @ 3'x3' - \$6,000 - \$36,000

277,577 gal. runoff treated per year



Phosphorus Reduction .37 lb/year

Parks and Rec Office

Storm Drain

Nitrogen Reduction 2.88 lb/year

Clinton Town Hall

50 East Main St Clinton, CT

Notes:

-High profile location, with excellent existing landscaping

-Excellent educational opportunity

-Runoff from site empties directly into LI Sound

-Total Potential Disconnect: 3,485 sq. ft.

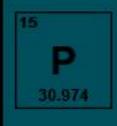
IMPERVIOUS COVER

Runoff from most of the site conducted to storm drain emptying directly into Long Island Sound. On-site treatment of stormwater is of great ecological importance at this location.

Potential disconnect of 3,485 sq. ft. of impervious cover with the use of rain garden. Gravel swale required to reduce erosion and conduct runoff from north lot. Underdrain required beneath sidewalk if roof runoff is to be conducted to rain garden.

Clinton Town Hall 50 East Main St

Drainage Area 3,485 sq. ft.


Underdrain

-

Downspout


Suggested Practice Rain Garden - 6" Depth - 578 sq. ft. - \$2,265 - \$9,060

91,766 gal. runoff treated per year

Phosphorus Reduction .12 lb/year

Nitrogen Reduction .95 lb/year ²⁰

Clinton Town Marina

37 Riverside Dr

Notes:

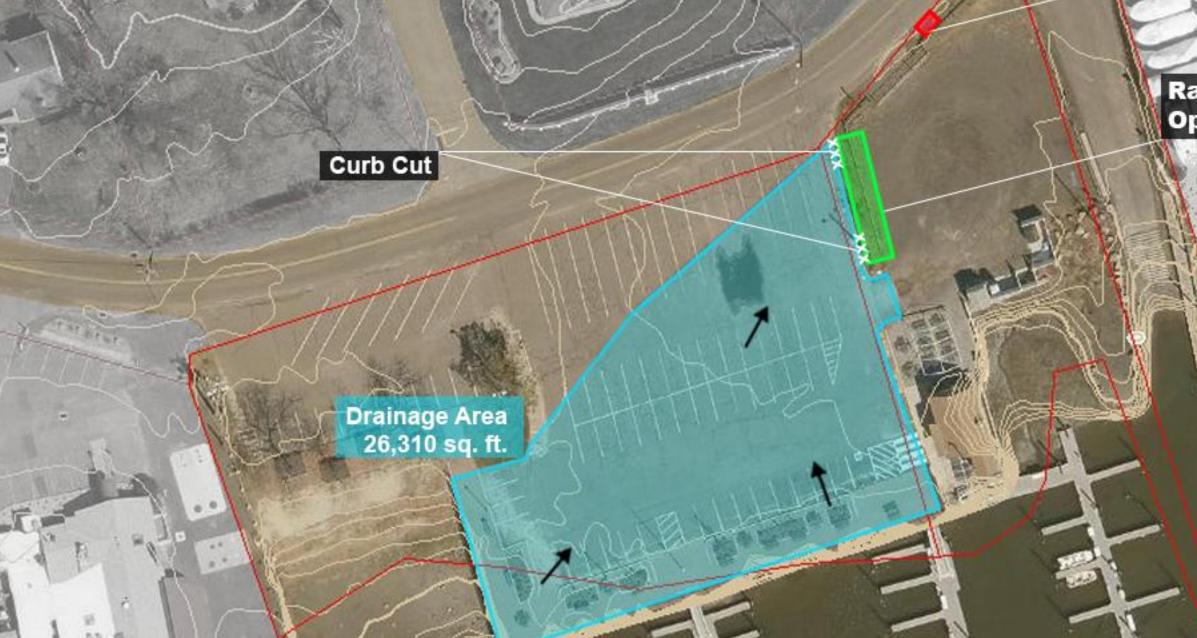
-Large area of impervious cover ideal for disconnect

-High profile location, with proximity to Long Island Sound

-Great location for showcase GSI practice

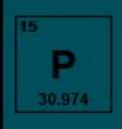
-Total Potential Disconnect: 39,900 sq. ft.

IMPERVIOUS COVER

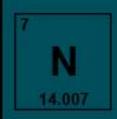

Possible disconnect of 13,591 sq. ft. of impervious cover with use of tree box filters. Two tree box filters at the entrance to boat launch would greatly improve aesthetics. Installing only tree box filters will treat 55% of total drainage area, together with rain garden treating 100%. Installation requires removal of one section of existing fence.

Riverside Dr

Possible disconnect of 26,310 sq. ft. of impervious cover with the use of rain garden. Gravel storage of 3' beneath system required to accomodate large drainage area. Existing trees to be replaced. Full drainage area empties directly into Long Island Sound.


Clinton Town Marina 37 Riverside Dr

Storm Drain

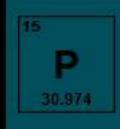

Suggested Practice Rain Garden - 546 sq. ft. @ 1' depth - 3' gravel storage - \$2,090 - \$8,363

692,831 gal. runoff treated per year

Phosphorus Reduction .91 lb/year

Nitrogen Reduction 7.19 lb/year

Tree Box Filter Opportunity

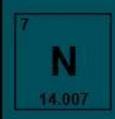

Drainage Area 13,591 sq. ft.

Curb Cut

Drainage Area 26,310 sq. ft.

Suggested Practice Combined - 480 sq. ft. Rain Garden - 2 @ 3'x3' Tree Box Filters - \$15,924 - \$43,696

1,050,717 gal. runoff treated per year



Phosphorus Reduction 1.38 lb/year

Clinton Town Marina 37 Riverside Dr

Rain Garden Opportunity (1' Depth w/ 2' Gravel Beneath)

Storm Drain

Nitrogen Reduction 10.91 lb/year

Joel School

137-B Glenwood Rd Clinton, CT

Notes:

-Large area of impervious cover ideal for disconnect

-Excellent educational opportunity, high visibility

-Excellent existing landscaping

-Total Potential Disconnect: 25,553 sq. ft.

IMPERVIOUS COVER

Potential disconnect of 5,053 sq. ft. of impervious cover with use of rain garden. High visibility and great educational opportunity at rear entrance to building.

Potential disconnect of 20,500 sq. ft. of impervious cover with the implementation of a series of rain gardens. Large drainage area for two storm drains near front entrance; multiple GSI practices recommended due to runoff volume and lack of usable space. Excellent opportunity to add to the aesthetics of school entrance, with possible incorporation of practices into curriculum.

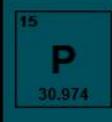
24

Lewin G. Joel School East Lot (North Section)

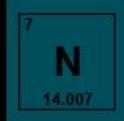
Drainage Area 2 2,200 sq. ft.

Curb Cut

Drainage Area 1 4,400 sq. ft.


Storm Drain

Suggested Practice Rain Garden - 1' Depth - 548 sq. ft. - \$2,195 - \$8,760


173,775 gal. runoff treated per year

Rain Garden

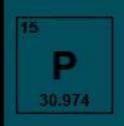
Opportunity

Phosphorus Reduction .23 lb/year

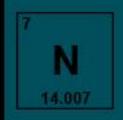
Nitrogen Reduction 1.8 lb/year ²⁵

Lewin G. Joel School East Lot (South Section)

Drainage Area 3 5,400 sq. ft.


Drainage Area 4 8,500 sq. ft.

Curb Cut


Storm Drain

365,980 gal. runoff treated per year

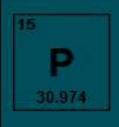
Suggested Practice Rain Garden - 8" & 15" Depths - 1,067 sq. ft. - \$4,268 - \$13,728 Rain Garden Opportunity

Phosphorus Reduction .48 lb/year

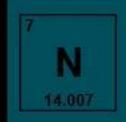
Nitrogen Reduction 3.8 lb/year

Lewin G. Joel School East Lot

Drainage Area 2 2,200 sq. ft.


Drainage Area 3 5,400 sq. ft.

Drainage Area 4 8,500 sq. ft.


Drainage Area 1 4,400 sq. ft.

Suggested Practice Rain Garden - 8" - 15" Depths - 1,615 sq. ft. - \$6,463 - \$25,840

539,755 gal. runoff treated per year

Phosphorus Reduction .71 lb/year

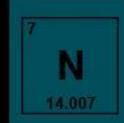
Nitrogen Reduction 5.6 lb/year²

Lewin G. Joel School Rear Entrance

Drainage Area 5,053 sq. ft.


Downspout

Rain Garden Opportunity


Storm Drain

Suggested Practice Rain Garden - 6" Depth - 840 sq. ft. - \$1,680 - \$6,720

133,122 gal. runoff treated per year

Phosphorus Reduction .18 lb/year

Nitrogen Reduction 1.38 lb/year

Hull Library

10 Killingworth Tpke Clinton, CT

Notes:

-Large area of impervious cover ideal for disconnect

-High profile location, with proximity to waterbody

-Excellent educational/community engagement opportunity

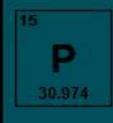
-Total Potential Disconnect: 13,068 sq. ft.

Uneven slope at proposed GSI site. Outflow pipe from storm drain creates mound restricting rain garden to west side of drain. Slope also drops suddenly at rear of parking lot; a berm is required for stabilization. Potential disconnect of 13,068 sq. ft. of impervious cover with the use of rain garden. Practice can be incorporated into educational programming at library. Great location to involve community with installation.

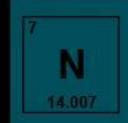
lingworth Tpke

Rain Garden Opportunity

Storm Drain


Drainage Area 13,068 sq. ft.

Suggested Practice Rain Garden - 12" Depth - 1,084sq. ft.


- \$4,336 - \$17,334

344,075 gal. runoff treated per year

Phosphorus Reduction .45 lb/year

Hull Library 10 Killingworth Tpke

Nitrogen Reduction 3.57 lb/year ³⁰

Site Recommendation Figures

		Total Disconnection (sq. ft)	Phosphorus Nutrient Reduction (lb P/yr)	Nitrogen Nutrient Reductions (lb N/yr)	Gallons Treated per Year	Estimated Cost			
	Southwest Parking Lot Area	9,148	0.32	2.5	273,745	\$8,400-19,200			
Clinton Parks and	Northwest parking Lot Area	10,236	0.36	2.8	269,546	\$5,120-20,480			
Rec	Lower Office Driveway	10,541	0.37	2.88	277,577	\$6,000-36,000			
4	Southeast Bioretention	101,880	3.54	27.86	2,682,818	\$11,320-45,280			
Clinton Town Hall	East Building Opportunity	3,485	0.12	0.95	91,766	\$2,265-9,060			
Clinton Town	Rain Garden	26,310	0.91	7.19	692,831	\$2,090-8,363			
Marina	Rain Garden and Tree Box	39,900	1.38	10.91	1,050,717	\$15,924-43,696			
	There is no total for this site, you would be one practice or the other								
	Drainage Area 1	4,400	0.15	1.2	115,850	\$1,460-5,840			
Contraction and the second second	Drainage Area 2	2,200	0.08	0.6	57,925	\$735-2,928			
	Drainage Area 3	5,400	0.19	1.48	142,179	\$2,700-10,800			
School	Drainage Area 4	8,500	0.29	2.32	223,801	\$1,568-6,272			
	Blue Roof Opportunity	5,052	0.18	1.38	133,122	\$1,680-6,720			
	Total For All	25,552	0.89	6.98	672,877	\$8,143-32,560			
Hull Library	Back of Parking Lot	13,068	0.45	3.57	344,075	\$4,336-17,344			

Sites Not Chosen for Stormwater Retrofits

- **Clinton Police Department** Disconnected with constructed wetland
- **Liberty Green** Limited options and nearby state owned road
- **Clinton Town Beach** Limited impervious surfaces and no erosion issues
- Abraham Pierson School Current disconnection and possible future construction
- **Morgan High School** New construction already treating runoff

Clinton Town Beach

Contact & Partners

This project was funded by a grant from the Long Island Sound Futures Fund of the National Fish and Wildlife Foundation. It is a partnership of the University of Connecticut Center for Land Use Education and Research (CLEAR) and Rutgers University Water Resource Program, and is adapted from a process developed by the latter.

Contacts:

Mike Dietz, UConn CLEAR, michael.dietz.@uconn.edu, 860-486-2436 Dave Dickson, UConn CLEAR, <u>david.dickson@uconn.edu</u>, 860-345-5228

